10.19721/j.cnki.1671-8879.2022.04.008
基于视频的机场出发层违规接客车辆识别方法
为有效监管机场出发层车道边车辆违规接客行为,降低违规接客行为对陆侧交通通行能力的影响,建立基于监控视频自动识别航站楼出发层违规接客车辆的方法,对违规接客车辆的行为特征进行分析,提出基于YOLO_v4&深度简单及时跟踪(DeepSORT)的车辆运动状态检测算法与车辆接客行为识别算法.首先,使用YOLO_v4识别 目标,获取目标的类别与位置信息,统计车辆目标在各个运行状态下的位移数据,分析车辆目标运行状态阈值,建立基于固定监控机位的车辆运动状态检测算法.然后,结合识别跟踪的信息,分析发生接送客行为时各目标间的行为关系与发生区域,以车内人数变化为区分接客与送客行为的重要依据,建立了基于YOLO_v4&DeepSORT识别跟踪结果的接送客行为检测算法.其中,违规识别算法使用YOLO_v4和DeepSORT识别、跟踪、记录并处理目标类别与位置信息,判断车辆的运行状态与驾乘人员在车辆附近的相关行为;在车辆停止时记录乘客行为信息,计算车内人数变化情况,在车辆消失于监控区域时根据最终车内人数变化情况判断车辆的接送客行为.最后,使用Python语言实现机场出发层违规接客车辆识别算法,并以昆明长水国际机场2019年9月1日~3日的监控视频进行违规识别算法测试.结果表明:提出的违规接客识别算法从机场出发层识别接客行为较为有效,其识别准确度达到了86.49%,可为机场出发层违规接客识别提供有效监控手段;同时,其中仅有0.41%的车辆被误判为违规接客,具有较低的误识别率,该算法可较好地区分接客行为与送客行为,有助于在接送客混行的出发层中将正常车辆与违规车辆加以区分.
交通工程、违规识别算法、目标识别跟踪、违规接客、机场陆侧、YOLO_v4、DeepSORT
42
U491.4(交通工程与公路运输技术管理)
国家重点研发计划;陕西省教育厅科研计划项目
2022-09-20(万方平台首次上网日期,不代表论文的发表时间)
共14页
73-86