期刊专题

10.11973/wsjc202210010

基于超声导波和机器学习的蜂窝夹层结构脱黏诊断

引用
针对蜂窝夹层结构的脱黏损伤诊断,首先通过集成压电陶瓷传感器构建传感器网络,采用超声导波加权分布诊断成像方法对损伤进行平面内定位诊断;然后利用超声导波在结构厚度截面内对不同脱黏层的敏感度差异提取损伤特征;最后通过蜂窝夹层结构有限元模型进行大量的导波传播仿真,形成训练数据库,进而训练形成稳定的支持向量机(SVM)脱黏层分类机器学习模型,进行截面内脱黏层诊断.验证试验结果表明,该方法能够有效诊断出蜂窝夹层结构的脱黏损伤,平面内定位误差小于2 cm,截面内脱黏层诊断准确度为100%.

蜂窝夹层结构、超声导波、压电陶瓷传感器、机器学习、支持向量机

44

TG115.28(金属学与热处理)

国防科研项目;国家自然科学基金;国家自然科学基金

2023-01-13(万方平台首次上网日期,不代表论文的发表时间)

共4页

44-47

相关文献
评论
暂无封面信息
查看本期封面目录

无损检测

1000-6656

31-1335/TG

44

2022,44(10)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn