期刊专题

10.11973/wsjc202207012

小波分析结合神经网络的桩基缺陷检测

引用
引入一种小波分析结合神经网络的桩基检测方法,根据桩基中超声波传播的特点,利用小波分析对采集的超声波信号进行小波包分解,对分解后的信号进行归一化处理,将超声波信号矩阵化,构建表征桩基缺陷信息的特征向量;再取多组特征向量作为神经网络的训练样本,对特征向量进行训练学习,并将未诊断样本输入神经网络进行识别验证.试验数据表明,通过小波分析方法获取超声波信号特征向量并构建的神经网络可以有效识别出桩基缺陷以及缺陷类型.

桩基检测、超声波法、缺陷诊断、小波分析、神经网络

44

TG115.28(金属学与热处理)

国家自然科学基金;国家自然科学基金;国家自然科学基金

2022-10-09(万方平台首次上网日期,不代表论文的发表时间)

共5页

50-54

相关文献
评论
暂无封面信息
查看本期封面目录

无损检测

1000-6656

31-1335/TG

44

2022,44(7)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn