期刊专题

10.11973/wsjc202002014

主成分分析法在脉冲涡流缺陷识别中的应用

引用
在钢结构脉冲涡流缺陷识别中,通常采用信号的峰值幅度、过零时间、主峰面积等特征参数对缺陷进行表征.但上述参数相互关联,存在一定的信息冗余,增加了数据分析量及信息筛选难度,进而影响了缺陷识别的效率.针对上述问题,采用主成分分析法对脉冲涡流信号的6个特征参数进行降维处理,构造了一个主成分特征,减少了信息冗余;将上述主成分特征输入Logistic分类器,实现了对钢结构减薄缺陷的准确识别.结果 表明:主成分分析法可以在确保缺陷识别准确率的情况下,有效减少分类器处理的数据量,提高缺陷识别效率.

主成分分析、脉冲涡流、缺陷识别、Logistic分类

42

TG115.28(金属学与热处理)

国家科技重大专项2016ZX06004003

2020-06-15(万方平台首次上网日期,不代表论文的发表时间)

共5页

61-64,73

暂无封面信息
查看本期封面目录

无损检测

1000-6656

31-1335/TG

42

2020,42(2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn