期刊专题

10.7498/aps.71.20220252

基于磁性隧道结的群体编码实现无监督聚类

引用
利用新型材料器件发展类脑计算硬件研究的关键问题是发展出合适的算法,能够发挥新器件的特点和优势.群体编码是生物神经系统常见的编码方式,能够有效去除噪音,实现短时程记忆及复杂的非线性映射功能.本文选择自旋电子学器件中研究较多、工艺较成熟的磁性隧道结,应用其可调控的随机动力学实现群体编码.作为一个应用的例子,超顺磁隧道结构建的二层脉冲神经网络成功完成了鸢尾花数据集的无监督聚类.数值仿真表明基于磁性隧道结的群体编码可以有效对抗器件的非均一性,为类脑计算硬件研究提供重要的参考.

磁性隧道结、群体编码、脉冲神经网络、无监督学习

71

TP311.52;TN911.22;TP183

国家自然科学基金;国家自然科学基金;资助的课题

2022-07-29(万方平台首次上网日期,不代表论文的发表时间)

共8页

191-198

暂无封面信息
查看本期封面目录

物理学报

1000-3290

11-1958/O4

71

2022,71(14)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn