神经形态阻变器件在图像处理中的应用
随着搭载于边缘终端上的图像与视频等数据密集型应用的日益增长,基于传统冯·诺依曼架构的互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)硬件系统正面临着能耗、速度和尺寸等多方面的挑战.神经形态器件包括具有存算一体特性的电学阻变器件和具有感存算一体特性的光电阻变器件,因其具有与生物神经系统的高相似度,及其高能效、高集成度、宽带宽等优势,在图像处理应用方面展现出巨大发展潜力.这类器件不仅能够用于加速传统图像低阶预处理和高阶处理中的大量运算,且能用于实现仿生物视觉系统的高效图像处理算法.本文介绍了最近的电学及光电神经形态阻变器件,并结合图像处理算法综述了神经形态阻变器件在图像处理方面的硬件实施和挑战,并对其发展前景提出了思考.
神经形态阻变器件、图像预处理、图像识别
71
TN929.53;TP391.41;TN86
国家自然科学基金;国家自然科学基金;广东省自然科学基金;广东省青年创新人才基金;深圳市南山5G前沿项目;深圳市南山5G前沿项目;资助的课题
2022-07-29(万方平台首次上网日期,不代表论文的发表时间)
共21页
59-79