期刊专题

10.7498/aps.71.20211761

基于支撑先验与深度图像先验的无预训练磁共振图像重建方法

引用
基于深度学习的磁共振成像(magnetic resonance imaging,MRI)方法需要大规模、高质量的病患数据样本集进行预训练.然而,由于病患隐私及设备等因素限制,获取大规模、高质量的磁共振数据集在实际临床应用中面临挑战.本文提出一种新的基于深度学习的欠采样磁共振图像重建方法,该方法无需预训练、不依赖训练数据集,而是充分利用待重建的目标MR图像的结构先验和支撑先验,并将其引入深度图像先验(deep image prior,DIP)框架,从而削减对训练数据集的依赖,提升学习效率.基于参考图像与目标图像的相似性,采用高分辨率参考图像作为深度网络输入,将结构先验信息引入网络;将参考图像在小波域中幅值大的系数索引集作为目标图像的已知支撑集,构造正则化约束项,将网络训练转化为网络参数的最优化求解过程.实验结果表明,本文方法可由欠采样k空间数据重建得到更精确的磁共振图像,且在保留组织特征、细节纹理方面具有明显优势.

磁共振成像;欠采样图像重建;深度图像先验;支撑先验

71

国家自然科学基金;国家自然科学基金;广西自然科学基金;广西自然科学基金;玉林师范学院科研基金;资助的课题

2022-03-25(万方平台首次上网日期,不代表论文的发表时间)

共13页

344-356

暂无封面信息
查看本期封面目录

物理学报

1000-3290

11-1958/O4

71

2022,71(5)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn