期刊专题

10.11959/j.issn.2096−3750.2022.00255

基于加权朴素贝叶斯的水质数据分类研究

引用
为更好地实施水环境管理政策,水质评价是基础环节,即根据某一水域多个水质参数,如何将其合理地划分到特定水质类别.针对该问题,提出了一种改进的朴素贝叶斯分类方法,该方法赋予不同属性以不同的权值,削弱了朴素贝叶斯条件独立性的假设,使分类结果更接近实际类别.首先,参考国家地表水水质自动监测站(以下简称国控水站)发布的数据,选取其中500条水质数据作为样本,基于溶解氧、高锰酸盐指数、氨氮和总磷4个指标建立评价体系;然后,利用改进朴素贝叶斯分类方法对样本进行学习与评价,并采用五折交叉验证法验证其分类性能.结果表明,改进朴素贝叶斯分类方法的准确率、精确率、召回率和F1值分别达到96.0%、95.9%、93.8%和94.8%,水质数据分类的性能指标相较于其他朴素贝叶斯分类方法更高,可对实际工程中遇到水质数据分类的问题提供一定的参考.

水质评价、朴素贝叶斯、五折交叉验证、性能指标

6

X824(环境质量分析与评价)

国家自然科学基金;无锡市科技发展资金资助项目;无锡市科技发展资金资助项目;未来网络科研基金项目

2022-03-30(万方平台首次上网日期,不代表论文的发表时间)

共10页

113-122

暂无封面信息
查看本期封面目录

物联网学报

2096-3750

10-1491/TP

6

2022,6(1)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn