期刊专题

10.11959/j.issn.2096−3750.2021.00235

图神经网络驱动的交通预测技术:探索与挑战

引用
随着物联网及人工智能技术的快速发展,对交通数据进行精准的分析和预测成为智慧交通的首要环节.近年来,交通预测方法逐渐从经典的模型驱动转变为数据驱动,然而,如何通过大数据有效分析路网的时空特性是预测过程中面临的关键难题之一.时空大数据分析是交通预测的利器,将交通路网建模为图网络,将深度学习方法在图网络上进行扩展,通过图神经网络建立时空预测模型,采用图卷积的方式有效地获取路网传感器节点之间的时空相关性,可以显著提高交通预测模型的精度.针对图神经网络驱动的交通预测技术进行了探索,基于深度时空特性分析提炼了两大类交通预测模型,并通过实例进行分析和验证,探讨了图神经网络在交通预测领域的技术优势和主要挑战,挖掘了图神经网络预测机制的潜在研究方向.

交通预测;图神经网络;时空相关性;同步卷积;图注意力网络

5

TP391(计算技术、计算机技术)

国家自然科学基金;国家自然科学基金;国家自然科学基金;河南省科技攻关项目;河南省科技攻关项目

2022-01-13(万方平台首次上网日期,不代表论文的发表时间)

共16页

1-16

相关文献
评论
暂无封面信息
查看本期封面目录

物联网学报

2096-3750

10-1491/TP

5

2021,5(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn