10.11959/j.issn.2096-3750.2017.00008
基于多信息融合的室内定位系统
日常生活中使用GPS (global position system)进行定位,但GPS无法在室内工作,准确地进行室内定位成为研究的热点之一.在早期的研究中,围绕Wi-Fi指纹进行了大量的实验与改进,但Wi-Fi指纹受到环境因素制约,定位误差较大.针对这一问题,提出一种多信息融合的室内定位算法.首先通过Wi-Fi指纹进行粗略的定位,获取Wi-Fi接入设备的MAC地址以及其信号强度RSSI(received signal strength indication),通过kNN(k nearestneighbor)算法进行分类,得到top-n候选集.再通过地磁信号与图片信息进行候选集的过滤.最后利用社交信息,给出人在室内的最终定位结果.在Android平台和服务器上对该系统进行验证,实验结果表明提出的多信息融合的方法比Wi-Fi指纹的定位算法精度明显提高.
室内定位、Wi-Fi信号指纹、地磁校准、图像匹配、社交信息
1
TP391(计算技术、计算机技术)
国家自然科学基金资助项目61572060,61190125;CERNET创新2015基金资助项目NGII20151004;国家基础研究发展计划“973”计划基金资助项目2013CB035503
2018-05-30(万方平台首次上网日期,不代表论文的发表时间)
共12页
55-66