10.13393/j.cnki.issn.1672-948X.2023.02.011
基于自适应LASSO的逻辑回归砂土液化判别模型
逻辑回归模型在国际上常用于地震液化判别,但该方法难以处理过多影响因素引发的共线性问题,进而严重影响模型的预测精度.能同时进行变量筛选和参数估计的自适应LASSO在处理共线性问题上有着独特的优势.因此,本研究以国内外533组历史液化案例为样本,在综合考虑地震液化多影响因素的基础上,引入自适应LASSO估计法,对逻辑回归液化判别模型进行优化,建立了基于自适应LASSO的逻辑回归砂土液化判别模型,该模型还包括了新的液化影响因素——土壤分类指数Ic,最后对重要液化影响因素进行敏感性分析.结果表明:针对因素过多的液化判别问题时,自适应LASSO逻辑回归模型可有效地选择重要因素进行建模;相比其它逻辑模型模型和简化方法,自适应LASSO逻辑回归模型精度更高,泛化能力更强;引入了新变量土壤分类指数I c后,模型性能进一步提升,验证了建立逻辑回归液化判别模型时考虑Ic的重要性;敏感性分析发现重要影响因素的排序为:修正尖端阻值、峰值加速度、土壤分类指数、水位、细粒含量、侧壁摩阻值.
砂土液化、预测模型、自适应LASSO、逻辑回归、土壤分类指数
45
TU43(土力学、地基基础工程)
土木工程防灾减灾湖北省引智创新示范基地项目2021EJD026
2023-04-03(万方平台首次上网日期,不代表论文的发表时间)
共6页
67-72