期刊专题

10.13393/j.cnki.issn.1672-948X.2019.02.002

基于随机漂移粒子群优化的随机森林预测模型及水文应用实例

引用
提出一种基于随机漂移粒子群(RDPSO)算法优化的随机森林(RF)预测方法,利用RDPSO算法优化RF决策树数量和分裂属性个数两个关键参数,构建RDPSO-RF预测模型,并与基于RDPSO算法优化的支持向量机(SVM)、BP神经网络预测模型作对比,以某水文站枯水期1~3月月径流预测为例,利用实例前43年和后10年资料对3种模型进行训练和预测.结果表明,RDPSO-RF模型对实例1~3月月径流训练、预测的平均相对误差绝对值分别为4.28%、3.88%、5.67%和3.74%、4.57%、4.88%,训练、预测精度均优于RDPSO-SVM、RDPSO-BP模型,具较好的预测精度和泛化能力,可为相关预测研究提供参考和借鉴.

径流预测、随机漂移粒子群算法、随机森林、参数优化

41

P338(水文科学(水界物理学))

国家水体污染控制与治理科技重大专项201307102-006-01;院士工作站建设专项2015IC013

2019-04-25(万方平台首次上网日期,不代表论文的发表时间)

共5页

6-10

暂无封面信息
查看本期封面目录

三峡大学学报(自然科学版)

1672-948X

42-1735/TV

41

2019,41(2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn