期刊专题

10.13393/j.cnki.issn.1672-948X.2015.05.002

AdaBoost-BP模型在大坝变形预测中的应用

引用
针对传统BP神经网络自身存在局部极小值及模型的泛化能力差时预测精度无法满足实际需求等的不足,本文用AdaBoost算法优化传统的BP神经网络得到AdaBoost-BP预测模型,可以减小局部极小值的影响,增强了模型的泛化能力,提高模型的预测精度.示例证明,AdaBoost-BP预测模型比传统的BP神经网络预测模型拥有更高的预测精度.

AdaBoost算法、BP神经网络、大坝变形预测

37

TV698.1(水利枢纽、水工建筑物)

国家自然科学基金项目51279052;新世纪优秀人才支持计划资助NCET-11-0628;高等学校博士学科点专项科研基金20120094110005;中央高校基本科研业务费项目2012B07214

2015-11-06(万方平台首次上网日期,不代表论文的发表时间)

共4页

5-8

相关文献
评论
暂无封面信息
查看本期封面目录

三峡大学学报(自然科学版)

1672-948X

42-1735/TV

37

2015,37(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn