期刊专题

RBF神经网络电力负荷预测模型研究

引用
运用Matlab神经网络工具箱建立了一个RBF神经网络,依据某地实际的历史电力负荷数据和天气数据作为训练样本和测试样本,进行了考虑历史天气状况因素的电力系统短期负荷的预测和仿真,预测结果平均相对误差较小,满足精度要求,并将此RBF负荷预测模型与BP神经网络建立的短期电力负荷预测模型的预测结果进行了比较,显示了在相同预测条件下,RBF神经网络相比于BP神经网络在电力系统短期负荷预测方面的优越性.

短期负荷预测、RBF神经网络、BP神经网络、Matlab

35

TM715(输配电工程、电力网及电力系统)

2013-11-27(万方平台首次上网日期,不代表论文的发表时间)

共4页

45-48

相关文献
评论
暂无封面信息
查看本期封面目录

三峡大学学报(自然科学版)

1672-948X

42-1735/TV

35

2013,35(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn