期刊专题

基于实测数据分析的风电功率预测

引用
由于风力发电所利用的近地风能具有波动性、间歇性、低能量密度等特点,对风电场的发电功率进行尽可能准确的预测是风电发展的关键.本文根据某风场的实测数据,采用了时间序列中的自回归移动平均模型(ARMA),对风电功率进行了实时预测;为进一步提高风电功率实时预测的精确性,本文提出了一种基于BP神经网络和ARMA组合模型的预测方法,并对上述实测数据采用该方法进行了实时预测,预测结果表明:组合模型的预测结果与单独的自回归移动平均模型相比,风电功率的实时预测的均方根误差和百分比误差分别减少了4.01%和3.25%,工程中可以采用该组合模型对风电功率进行预测,

风电功率预测、ARMA模型、组合预测

34

TM715(输配电工程、电力网及电力系统)

2012-12-24(万方平台首次上网日期,不代表论文的发表时间)

共4页

48-51

相关文献
评论
暂无封面信息
查看本期封面目录

三峡大学学报(自然科学版)

1672-948X

42-1735/TV

34

2012,34(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn