期刊专题

10.3969/j.issn.1674-3644.2020.05.007

基于售后服务记录的卡车动力转向 系统漏油分析与预测

引用
为了分析卡车动力转向系统的漏油原因,同时避免车辆漏油问题的进一步恶化,提出一种基于售后服务记录的漏油分析预测方法.首先采用自然语言情感分析技术,通过结合注意力机制的双向长短期记忆神经网络模型(Att-BiLSTM)根据漏油描述文本进行漏油程度量化;然后采用随机森林(RF)算法并结合BP神经网络,基于卡车相关生产数据对漏油的主要原因进行分析,并建立漏油程度预测模型.通过实例验证了本文方法的有效性.对漏油相关原因的分析结果可为卡车制造企业提供工艺改进的依据,同时,根据预测模型分析漏油程度的恶化趋势,可避免严重漏油事故的发生.

动力转向系统、漏油、售后服务记录、情感分析、Att-BiLSTM、随机森林算法、BP神经网络

43

TP391.1;U463.44+2(计算技术、计算机技术)

国家自然科学基金资助项目51975431,71271160

2020-09-25(万方平台首次上网日期,不代表论文的发表时间)

共8页

362-369

暂无封面信息
查看本期封面目录

武汉科技大学学报(自然科学版)

1674-3644

42-1608/N

43

2020,43(5)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn