期刊专题

10.3969/j.issn.1674-3644.2019.03.010

一种改进的主成分分析特征抽取算法:YJ-MICPCA

引用
针对主成分分析(PCA)假设数据服从高斯分布的条件以及只能处理特征之间线性关系的不足,提出一种基于Yeo-Johnson变换和最大信息系数(MIC)的PCA特征抽取算法,命名为YJ-MICPCA.通过Yeo-Johnson变换改善原始数据分布,使其近似服从高斯分布,并将PCA中计算协方差矩阵转化为计算MIC矩阵的平方,使其也能处理特征间存在的非线性关系.以UCI机器学习数据库中的11个数据集为实验对象,采用支持向量机、朴素贝叶斯模型、k近邻算法这3种分类器,比较了YJ-MICPCA与PCA及其他常用非线性降维方法LLE、Isomap、MSD、KPCA的降维效果和分类精度,结果表明YJ-MICPCA总体上优于其他几种算法.

主成分分析、最大信息系数、Yeo-Johnson变换、特征抽取、降维、分类

42

O213;O235(概率论与数理统计)

国家社会科学基金资助项目17BJY210

2019-05-29(万方平台首次上网日期,不代表论文的发表时间)

共7页

220-226

暂无封面信息
查看本期封面目录

武汉科技大学学报(自然科学版)

1674-3644

42-1608/N

42

2019,42(3)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn