期刊专题

10.3969/j.issn.1674-3644.2016.06.011

基于四元数理论与流形学习的多通道机械故障信号分类方法

引用
提出一种基于增广四元数矩阵奇异值分解与流形学习正交邻域保持嵌入算法的多通道机械故障信号分类方法,通过引入四元数来耦合4个通道信号,并且利用四元数乘方的性质对数据进行增广处理,充分利用各通道信息并挖掘通道之间的相关性,从而减少因故障特征信息丢失对分类结果的影响。此外,针对传统奇异谱分析提取特征参数的分类效果受噪声影响较大的问题,引入正交邻域保持嵌入算法对奇异值序列进行维数约简,最后使用分类器完成故障分类。对仿真信号的分类结果表明,在强噪声背景下,相较于单通道奇异谱分析方法和机械故障信号中常用的排列熵方法,本文提出的方法分类效果更好。将其应用于更为复杂的实测轴承故障信号的分类与识别中,同样有着较好的效果。

故障诊断、信号处理、四元数、奇异值分解、流形学习、故障分类

39

TH133.3;TH165.3

国家自然科学基金资助项目51475339;武汉科技大学冶金装备及其控制教育部重点实验室开放基金资助项目2015B11

2016-12-23(万方平台首次上网日期,不代表论文的发表时间)

共7页

455-461

暂无封面信息
查看本期封面目录

武汉科技大学学报(自然科学版)

1674-3644

42-1608/N

39

2016,39(6)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn