期刊专题

10.19843/j.cnki.CN42-1779/TQ.202106003

基于图像分析和深度学习的复合绝缘子憎水性分级

引用
为了更加方便快捷地检测大量复合绝缘子憎水性等级,提出一种基于图像分析和深度学习的复合绝缘子憎水性分级方法.首先为提高图像对比度,对复合绝缘子憎水性图像进行灰度化和图像增强处理;其次利用图像分析技术和U-Net网络提取水珠轮廓,得到水珠轮廓图像;接着引入深度卷积神经网络,将这些水珠轮廓图作为神经网络的输入,以相应的憎水性等级作为输出向量,训练网络得到分级模型;最后将分级模型用于憎水性分级,得到分级结果.实验结果表明:该方法的分级结果已达到实际应用要求,水珠轮廓提取的精度达到了92.96%,分级准确率达到了90.2%,预测一幅图像的憎水性等级平均耗时0.1 s.

图像分析;深度学习;神经网络;U-Net网络

43

TP391.4(计算技术、计算机技术)

国家自然科学基金60975011

2021-11-09(万方平台首次上网日期,不代表论文的发表时间)

共6页

580-585

暂无封面信息
查看本期封面目录

武汉工程大学学报

1674-2869

42-1779/TQ

43

2021,43(5)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn