期刊专题

10.19843/j.cnki.CN42-1779/TQ.202009022

基于MapReduce的朴素贝叶斯算法文本分类方法

引用
为了解决传统串行朴素贝叶斯算法分类性能低下的问题,提出一种基于朴素贝叶斯算法的并行化分类方法.选取多项式朴素贝叶斯,搭建Hadoop集群,通过卡方检验选取特征词,利用词频-逆文本频率指数方法计算出每个特征项的权值,并求出每类的权重总和,将权值应用到朴素贝叶斯公式中得到分类结果.实验结果表明:在该集群上设计的并行化朴素贝叶斯分类方法较比传统朴素贝叶斯方法,其精确率,召回率,F1值分别至少提高了7.66%,7.56%,11.98%,且用时更短,说明本文的方法能够提高处理文本的时间效率.

朴素贝叶斯、分类、并行化、MapReduce

43

TP311(计算技术、计算机技术)

2017年度湖北省教育厅科学研究计划指导性项目B2017051

2021-03-04(万方平台首次上网日期,不代表论文的发表时间)

共4页

102-105

相关文献
评论
暂无封面信息
查看本期封面目录

武汉工程大学学报

1674-2869

42-1779/TQ

43

2021,43(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn