期刊专题

10.13203/j.whugis20190174

基于ICEEMD-ICA与MDP准则的变形监测数据去噪方法

引用
针对经验模态分解(empirical mode decomposition,EMD)方法存在信噪分离不准确的缺陷,以及独立分量分析(independent component analysis,ICA)存在不确定性的问题,提出了一种改进完备集成经验模态分解(improved complete ensemble empirical mode decomposition,ICEEMD)、ICA与最小失真准则(minimal dis-tortion principle,MDP)相结合进行变形数据去噪的方法.首先,使用ICEEMD方法对变形监测数据进行有效分解,并以此构建虚拟噪声信号;其次,对虚拟噪声进行二次ICEEMD分解,提取更接近真实噪声的二次虚拟噪声信号,再以二次虚拟噪声和原变形数据组成输入观测通道,使用ICA进行处理;然后,通过计算ICA处理后的独立分量与输入信号的相关系数,解决独立分量的排序不确定性与相位不确定性问题;最后,使用MDP准则有效解决了独立分量的幅值不确定性.对加噪仿真数据和实际桥梁GNSS变形监测数据进行详细分析,结果表明,所提方法可取得良好的去噪效果,有效提升去噪的性能指标,充分验证了所提方法在变形监测数据去噪中具备的可行性和有效性.

改进完备集成经验模态分解;独立分量分析;二次虚拟噪声;最小失真准则;变形监测数据去噪

46

P207;P237(一般性问题)

国家自然科学基金;福建省自然科学基金;福建省交通运输科技项目;厦门市建设局科技计划;福建省住建厅科技研究开发计划;龙岩市科技计划;广西空间信息与测绘重点实验室开放基金

2022-01-13(万方平台首次上网日期,不代表论文的发表时间)

共8页

1658-1665

暂无封面信息
查看本期封面目录

武汉大学学报(信息科学版)

1671-8860

42-1676/TN

46

2021,46(11)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn