期刊专题

10.13203/j.whugis20180475

一种改进的多传感器数据自适应融合方法

引用
传感器的异常观测是多传感器信息融合的一个重要问题,且对融合精度有很大的影响.贝叶斯信息融合技术是解决该问题的一种有效方法,但是该方法需要进行无穷区间的积分运算,容易出现数值不稳定的问题.针对该问题提出了一种改进的多传感器自适应融合方法,利用传感器测量值之间的差值自适应建立传感器的后验概率分布模型,并结合互信息的理论实时识别和剔除异常观测值,从而避免了求熵时的积分计算.仿真和实测数据试验结果表明,所提方法在无异常观测值的条件下得到的结果与简单贝叶斯融合方法相当;对于存在异常观测值的情况下,信息融合的性能明显优于一般的贝叶斯融合方法.

多传感器信息融合、贝叶斯方法、异常观测、自适应建模、互信息

45

P228(大地测量学)

国家自然科学基金41876222

2020-12-03(万方平台首次上网日期,不代表论文的发表时间)

共8页

1602-1609

相关文献
评论
暂无封面信息
查看本期封面目录

武汉大学学报(信息科学版)

1671-8860

42-1676/TN

45

2020,45(10)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn