期刊专题

10.13203/j.whugis20160548

自适应渐消卡尔曼滤波及其在SINS初始对准中的应用

引用
卡尔曼滤波常常被用于惯性导航系统初始对准算法,其使用前提是对系统状态进行建模,从而得到比较准确的系统噪声和观测噪声统计特性.在模型失配和观测噪声干扰的情况下,常规卡尔曼滤波会出现精度下降甚至发散,从而影响初始对准精度.针对这一问题,提出了一种新型渐消卡尔曼滤波算法,引入了多重渐消因子对预测误差协方差阵进行调整,设计了基于新息向量统计特性的滤波状态x2检验条件,使渐消因子的引入时机更加合理,算法的自适应性得到增强.将改进的卡尔曼滤波算法应用到惯性导航系统的初始对准问题中,仿真试验和实测数据试验结果表明,与常规渐消因子滤波算法相比,新算法可以有效提高滤波精度及鲁棒性.

卡尔曼滤波、惯性导航系统、初始对准、自适应渐消滤波、滤波状态检验

43

P228(大地测量学)

国家自然科学基金41574069,41404002,61503404

2018-12-20(万方平台首次上网日期,不代表论文的发表时间)

共7页

1667-1672,1680

暂无封面信息
查看本期封面目录

武汉大学学报(信息科学版)

1671-8860

42-1676/TN

43

2018,43(11)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn