期刊专题

10.13203/j.whugis20150498

基于ImageNet预训练卷积神经网络的遥感图像检索

引用
高分辨率遥感图像内容复杂,细节信息丰富,传统的浅层特征在描述这类图像上存在一定难度,容易导致检索中存在较大的语义鸿沟.本文将大规模数据集ImageNet上预训练的4种不同卷积神经网络用于遥感图像检索,首先分别提取4种网络中不同层次的输出值作为高层特征,再对高层特征进行高斯归一化,然后采用欧氏距离作为相似性度量进行检索.在UC-Merced和WHU-RS数据集上的一系列实验结果表明,4种卷积神经网络的高层特征中,以CNN-M特征的检索性能最好;与视觉词袋和全局形态纹理描述子这两种浅层特征相比,高层特征的检索平均准确率提高了15.7%~25.6%,平均归一化修改检索等级减少了17%~22.1%.因此将ImageNet上预训练的卷积神经网络用于遥感图像检索是一种有效的方法.

遥感图像、检索、卷积神经网路、预训练

43

TP751(遥感技术)

国家自然科学基金41261091;江西省教育厅科技项目GJJ13482;江西省自然科学基金20151BAB207062.The National Natural Science Foundation of China,No.41261091;the Youth Fund Project of Education Department of Jiangxi,No.GJJ13482;the National Natural Science Foundation of Jiangxi,No.20151BAB207062

2018-03-26(万方平台首次上网日期,不代表论文的发表时间)

共7页

67-73

暂无封面信息
查看本期封面目录

武汉大学学报(信息科学版)

1671-8860

42-1676/TN

43

2018,43(1)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn