一种基于流形学习的空间数据划分方法
空间数据划分是空间数据库系统进行高效空间连接操作的前提和基础.针对现有的空间数据划分方法难以保持低冗余度和高数据量均衡度以及高效支持空间连接的问题,提出了一种基于流形学习的空间数据划分算法.利用流形学习保留降维前源数据结构不变的特点,构建数据划分策略和映射方法,通过将邻近数据划分到同一数据块来减少数据冗余度,通过对最小数据块进行映射,提高整体的数据量均衡度.实验表明,本文提出的划分方法具有极低的数据冗余度和良好的数据量均衡度.
空间连接、空间数据划分、流形学习
40
P208(一般性问题)
国家自然科学基金资助项目41501391.The National Natural Science Foundation of China, No.41501391.
2015-12-10(万方平台首次上网日期,不代表论文的发表时间)
1294-1298,1323