期刊专题

一种提高神经网络泛化能力的自适应UKF滤波算法

引用
给出了利用EKF(extended Kalman)滤波和UKF(unscented Kalman)滤波提高神经网络泛化能力的方法.针对UKF参数选取随意性的问题,采用移动开窗估计法对状态噪声和观测噪声协方差矩阵进行自适应估计,提出了一种新的提高神经网络泛化能力的自适应UKF算法.利用检测样本进行了验证,结果表明,利用EKF、UKF和自适应UKF算法训练神经网络都能提高其泛化能力,其中自适应UKF算法优于其他几种算法.

神经网络、EKF滤波、UKF滤波、自适应估计

33

P207.2(一般性问题)

国家自然科学基金40274002;40474001

2008-06-30(万方平台首次上网日期,不代表论文的发表时间)

共4页

500-503

相关文献
评论
暂无封面信息
查看本期封面目录

武汉大学学报(信息科学版)

1671-8860

42-1676/TN

33

2008,33(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn