期刊专题

10.11959/j.issn.1000-436x.2021131

基于深度学习的传感云sink节点最优能效SWIPT波束成形设计

引用
为了解决传统基于最优化方法所设计的无线网络资源管理策略通常复杂度较高且实时性差,不利于在线决策制定的问题,针对基于SWIPT的传感云系统,建立汇聚(sink)节点能效最大化问题及其数学模型,然后引入深度学习方法,通过对最优化算法的学习实现更低复杂度与更高实时性的算法设计.为了实现深度学习算法在网络资源分配中的应用,首先将sink节点最优能效模型转化为高维可求解形式,设计具有迭代形式的SWIPT-WMMSE算法实现最优波束成形矢量的求解,同时证明了算法的收敛性.然后基于DNN逼近误差的传递过程推导了DNN设计准则,并通过对DNN的训练实现其对SWIPT-WMMSE算法的逼近.最后通过仿真实验分别验证了SWIPT-WMMSE算法与DNN算法的有效性,及DNN算法的逼近效果和在提升系统性能方面的优势.

深度学习;无线携能通信;汇聚节点;能效;波束成形;深度神经网络

42

TN92

国家自然科学基金资助项目;广西自然科学基金资助项目;广西高校中青年教师科研基础能力提升项目;广西民族大学引进人才科研启动项目

2021-08-18(万方平台首次上网日期,不代表论文的发表时间)

共13页

176-188

暂无封面信息
查看本期封面目录

通信学报

1000-436X

11-2102/TN

42

2021,42(7)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn