期刊专题

10.7536/j.issn.0252-3116.2013.21.020

利用图结构进行半监督学习的短文本分类研究

引用
为了解决基于向量空间模型构建短文本分类器时造成的文本结构信息的缺失以及大量样本存在的标注瓶颈问题,提出一种基于图结构的半监督学习分类方法,这种方法既能保留短文本的结构语义关系,又能实现未标注样本的充分利用,提高分类器的性能.通过引入半监督学习的思想,将数量规模较大的未标注样本与少量已标注样本相结合进行基于图结构的自训练学习,不断迭代实现训练样本集的扩充,从而构建最终短文本分类器.经对比实验证明,这种方法能够获得较好的分类效果.

半监督学习、短文本、图结构、自训练

57

TP391.1(计算技术、计算机技术)

2014-01-13(万方平台首次上网日期,不代表论文的发表时间)

共7页

126-132

相关文献
评论
暂无封面信息
查看本期封面目录

图书情报工作

0252-3116

11-1541/G2

57

2013,57(21)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn