期刊专题

基于多目标进化双聚类的数字图书馆协同过滤推荐系统

引用
针对数字图书馆推荐系统,提出一种能够同时考虑用户和项之间的相似性的协同过滤(CF)方法,即应用多目标优化计算双聚类技术对行和列同时进行聚类,完成对用户和项相似性同时分组.为评估算法的效率,应用MovieLens数据集进行实验,结果表明该方法能够为用户提供有用的推荐意见,其性能优于其他CF方法.

数字图书馆、推荐系统、个性化服务、协同过滤、多目标、双聚类

55

TP393(计算技术、计算机技术)

2011-08-05(万方平台首次上网日期,不代表论文的发表时间)

111-113

相关文献
评论
暂无封面信息
查看本期封面目录

图书情报工作

0252-3116

11-1541/G2

55

2011,55(7)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn