期刊专题

应用基于PLSR的土壤-环境模型预测土壤属性

刘娅周睿李燕丽潘贤章王昌昆解宪丽
中国科学院南京土壤研究所;
引用
(0)
收藏
土壤-环境模型对于正确理解土壤属性与环境因子间的关系,以及进行土壤属性预测与制图均具有重要的意义.研究区位于陕西省长武县内多年退耕还林还草沟壑区域,采集72个土壤表层样本,选择3/4的样本作为建模集,其余1/4的样本作为验证集;环境因子选择容易获取的地形因子和由遥感影像提取的植被因子和湿度因子,建立基于偏最小二乘回归( PLSR)的土壤-环境模型.结果表明:全氮、速效钾、全钾、有机质与环境因子间均有显著相关性;建立的PLSR模型可解释土壤属性的空间变异从23%(全氮)到27%(全钾);与逐步回归方法构建的模型相比,利用PLSR构建的土壤-环境模型可以更好地表征土壤属性与环境变量间的关系,拟合精度和预测…展开v

土壤-环境模型、土壤属性预测、偏最小二乘回归(PLSR)

49

P934(部门自然地理学)

中国科学院战略性先导科技专项;国家自然科学基金

2012-06-27(万方平台首次上网日期,不代表论文的发表时间)

共9页

237-245

暂无封面信息
查看本期封面目录

土壤学报

北大核心CSTPCD

0564-3929

32-1119/P

49

2012,49(2)

月卡
- 期刊畅读卡 -
¥68
季卡
- 期刊畅读卡 -
¥128
年卡
- 期刊畅读卡 -
¥199
年卡
- 超级文献套餐 -
¥499
查重
- 个人文献检测 -
快速入口
开通阅读并同意
《万方数据会员(个人)服务协议》

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn