期刊专题

10.3969/j.issn.1002-4565.2009.01.016

交易间隔、超高频波动率与VaR——利用日内信息预测金融市场风险

引用
金融市场风险价值研究一般采用日收益数据,并基于GARCH类模型进行估计和预测,这必然会损失部分日内信息.本文尝试使用中国股市日内分笔超高频数据,在分析日内波动特性的基础上,通过UHF-GARCH模型对交易间隔等日内信息建模,得到超高频波动率UHFV.本文用ARFIMA模型对超高频波动率UHFV建模,应用到风险价值VaR的预测中,并同基于日数据的GARCH类模型的VaR预测能力进行比较.VaR似然比和动态分位数等回测检验的结果显示,超高频数据波动率UHFV模型的预测能力强于采用日数据的GARCH类模型.

VaR、交易间隔、超高频波动率

26

F222.3(经济计算、经济数学方法)

2009-04-08(万方平台首次上网日期,不代表论文的发表时间)

共7页

96-102

暂无封面信息
查看本期封面目录

统计研究

1002-4565

11-1302/C

26

2009,26(1)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn