期刊专题

黑龙江省空气质量数据的分析和预测

引用
本文分别基于ARMA模型,主成分分析模型和神经网络模型对黑龙江省空气质量数据进行了分析和预测。首先,基于ARMA模型,本文对黑龙江省未来的空气状况数据进行预测并检验了其预测精度。其次,采用主成分分析对大气污染物等自变量进行降维,选取了有效的主成分,并对AQI进行一定刻画。最后,借助神经网络的计算机手段,对数据中变量的复杂关系做深入挖掘,以对前面的分析结果进行合理补充。

AQI、时间序列分析、主成分分析、神经网络

X83;P40

黑龙江省自然科学基金项目A201207;黑龙江省高校青年学术骨干支持计划项目1253G044;黑龙江大学第十二届大学生创新创业训练项目2014SX14资助。

2015-01-19(万方平台首次上网日期,不代表论文的发表时间)

共3页

16-18

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn