期刊专题

10.13546/j.cnki.tjyjc.2022.22.027

利率结构、市场摩擦与跨期套利——基于机器学习的预测

引用
传统套利模型大多仅采用价差自身滞后项建模预测,并利用预测值与阈值的差异来决定是否套利,该方法遗漏了较多有用信息.文章通过将利率结构及市场摩擦因素引入预测模型,并利用8种机器学习模型对沪深300股指期货的跨期价差进行预测及构造套利策略,研究结果表明:机器学习模型能够对跨期价差实现非常精准的拟合,Elman网络、随机森林以及平均集成模型表现最好;利用机器学习模型预测值构造的套利模型能够取得非常优异的费后绩效,绝大部分套利模型的夏普比率均在30以上;将利率结构和市场摩擦因素从机器学习模型中剔除,模型预测能力及套利绩效会发生明显下降.

利率结构、市场摩擦、跨期套利、机器学习

38

F832.51(金融、银行)

国家社会科学基金;湖南省教育厅科学研究项目

2023-01-13(万方平台首次上网日期,不代表论文的发表时间)

共6页

142-147

相关文献
评论
暂无封面信息
查看本期封面目录

统计与决策

1002-6487

42-1009/C

38

2022,38(22)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn