期刊专题

10.13546/j.cnki.tjyjc.2020.11.008

基于犹豫模糊集和BP神经网络的集成预测模型及其应用

引用
在股价指数预测等社会经济现象中,存在多种线性和非线性叠加的复杂特征,根据数据波动特点,文章在样本数据排序的基础上,结合区间数大小可能度的概念,对样本数据进行分类和区间划分.同时,通过反映不同决策者态度的多种隶属度计算方法,构造了犹豫模糊集,从而建立了基于综合隶属度权重来集成历史数据的线性预测模型.为拟合数据的非线性特征,引入了BP神经网络预测模型.利用台湾加权股价指数近五年的数据进行实例分析,将线性预测值和开盘价、最低价、最高价、收盘价作为BP神经网络的输入,最终获得了股价指数的预测值.结果 表明,提出的模型具有可行性和有效性.

模糊时间序列、自动聚类、犹豫模糊集、BP神经网络

36

O21(概率论与数理统计)

国家自然科学基金资助项目71871001;71501002

2020-08-07(万方平台首次上网日期,不代表论文的发表时间)

共5页

41-45

相关文献
评论
暂无封面信息
查看本期封面目录

统计与决策

1002-6487

42-1009/C

36

2020,36(11)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn