期刊专题

10.13546/j.cnki.tjyjc.2018.16.004

基于神经网络与非参数核方法CPI的ARMA预测与非线性改进

引用
文章以1990年1月至2017年1月间我国CPI指数序列为研究对象,采用ARMA模型对序列进行拟合和预测,得到短期预测误差为3.599,长期预测误差为12.528.针对ARMA模型没有良好捕捉到CPI序列中非线性关系的缺陷,本文采用BP网络、RBF网络以及核方法对其作了改进.有非线性特征的三种模型长期预测精度与ARMA模型相当,而短期预测精度有较大提高,最大提高比例为51.85%.

CPI、ARMA模型、BP网络、RBF网络、核方法

34

F224(经济计算、经济数学方法)

2018-11-02(万方平台首次上网日期,不代表论文的发表时间)

共4页

18-21

相关文献
评论
暂无封面信息
查看本期封面目录

统计与决策

1002-6487

42-1009/C

34

2018,34(16)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn