期刊专题

10.13546/j.cnki.tjyjc.2016.17.049

基于Logistic回归和BP神经网络的财务预警模型比较

引用
国内对Logistic回归模型和BP神经网络模型在财务预警方面已有不少实证研究,这些研究大多从预测准确度较高的角度出发,认为两个模型可以借鉴使用,但没有具体讨论模型犯第一类错误(将财务危机误判为财务正常)和第二类错误(将财务正常误判为财务危机)的概率.文章结合Logistic回归模型及BP神经网络模型的原理,选取上市公司财务数据进行实证,研究结果表明BP神经网络模型总体预测准确性较高,犯第一类错误的概率较低,对财务预警分析有一定借鉴作用;Logistic回归模型预测准确度低于BP神经网络模型,且犯第一类错误的概率远高于BP神经网络模型,因此运用该模型进行财务预警时应十分谨慎.

Logistic回归模型、BP神经网络模型、第一类错误

F275(企业经济)

2016-09-30(万方平台首次上网日期,不代表论文的发表时间)

179-181

相关文献
评论
暂无封面信息
查看本期封面目录

统计与决策

1002-6487

42-1009/C

2016,(17)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn