期刊专题

我国铁路客运量的季节时间序列模型

引用
针对季节调整方法如X-11等调整结果不利于解释,及其方法本身没有考虑我国像春节等季节性特点的不足,文章建立起一般的季节时间序列模型,另外,针对季节周期的主观诊断,文章建立起辅助回归模型,较为客观的诊断时间序列的季节周期.结合我国铁路客运量的实证分析,预测结果表明:未来10月铁路客流量较大,相反,11月和12月客运量较小,这点和历史数据的特征十分类似,说明建立的模型较合适.

时间序列、季节周期、客运量、预测

O212.1(概率论与数理统计)

2015-05-18(万方平台首次上网日期,不代表论文的发表时间)

73-76

相关文献
评论
暂无封面信息
查看本期封面目录

统计与决策

1002-6487

42-1009/C

2015,(7)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn