期刊专题

运用遗传神经网络模型对我国上市公司财务危机的预测

引用
神经网络已经被广泛运用于公司财务危机状况的预测,然而,神经网络常常存在着收敛于局部最优解、学习时间长等缺陷而影响其预测效果;而遗传算法(Genetic Algorithm)是一种全局寻优搜索算法,能够有效克服上述缺陷.因此,文章提出的将遗传算法和神经网络相结合的遗传神经网络模型(Genetic Neural Networks),既保留了神经网络原有的优点,又克服了上述的缺点.并利用我国上市公司财务数据对公司财务危机状况进行实证分析,结果表明.该模型预测效果令人满意,预测结果明显优于一般神经网络模型.

遗传BP算法、神经网络、财务危机

F275(企业经济)

2008-09-23(万方平台首次上网日期,不代表论文的发表时间)

共3页

32-34

相关文献
评论
暂无封面信息
查看本期封面目录

统计与决策

1002-6487

42-1009/C

2008,(14)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn