期刊专题

10.13675/j.cnki.tjjs.2204040

基于多头注意力机制的飞机发动机寿命预测研究

引用
针对飞机发动机监测参数多和预测模型不能充分提取监测数据的有效信息等问题,基于一维卷积神经网络(1DCNN)、时序卷积神经网络(TCN)和多头注意力机制,提出一种新的网络结构以实现飞机发动机剩余寿命的准确预测.对多维特征参数分别建立一个1DCNN-TCN模型,利用两层1DCNN对飞机发动机的多元传感器信号进行特征提取,利用TCN对特征量的时序信息进行记忆,通过多头注意力机制对多个1DCNN-TCN的输出分别进行加权处理,并拼接最终结果.分析结果表明,采用本文方法得到的RMSE和Score值比目前文献中最优值分别降低了6.84%,63.41%.该方法显著提升了飞机发动机剩余寿命预测的准确性.

飞机发动机、卷积神经网络、时序卷积神经网络、多头注意力机制、剩余寿命

44

V233.7(航空发动机(推进系统))

国家自然科学基金;襄阳湖北工业大学产业研究院项目

2023-08-07(万方平台首次上网日期,不代表论文的发表时间)

共9页

192-200

相关文献
评论
暂无封面信息
查看本期封面目录

推进技术

1001-4055

11-1813/V

44

2023,44(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn