期刊专题

10.3969/j.issn.1671-024x.2021.05.012

节点属性增强的图自编码器

引用
针对传统图自编码器的解码方法忽略节点属性作用的问题,提出一种联合重建图结构和属性信息的节点属性增强的图自编码器(NEGAE)模型.模型在编码器部分,采用图卷积神经网络进行图节点数据的特征提取,获得其节点表示;在解码器部分,一方面采用内积方式对图结构进行重建,另一方面采用反卷积的方式对节点属性进行重建;最后,将结构信息和节点属性信息的重建误差融合到一个统一的损失函数中进行优化.在Cora、Citeseer、Pubmed数据集上的结果表明:该模型在链路预测任务中的ROC曲线下面积(AUC)分别达到91.19%、90.27%、96.69%;聚类任务中的聚类准确度(ACC)分别达到60.31%、50.60%、66.79%,说明NEGAE方法在各种学习任务上均取得了良好的性能.

图自编码器;结构重建;节点属性重建

40

TN919.81

天津市科学技术与工程重大专项资助项目;天津市教委科研计划资助项目

2021-11-12(万方平台首次上网日期,不代表论文的发表时间)

共5页

76-80

暂无封面信息
查看本期封面目录

天津工业大学学报

1671-024X

12-1341/TS

40

2021,40(5)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn