期刊专题

10.11908/j.issn.0253-374x.21319

核相关神经网络点云自动配准算法

引用
点云配准是点云数据智能处理的重要问题,也是将点云应用于智慧城市、自动驾驶和智能三维重建等方面的关键.针对现有点云配准方法效率低、鲁棒性差的问题,提出了一种基于核相关神经网络的点云自动配准算法.首先构建点云核用于计算点云中每个点的核相关度,然后通过多层感知机对点云进行特征编码,基于编码特征向量估计点间对应关系并求解变换参数,最后以迭代方式来使待配准点云不断逼近目标点云,完成点云配准.使用斯坦福大学3D扫描模型库中的Bunny、Dragon、Happy、Elephant、Horse点云数据,对该算法以及迭代最近邻点算法(ICP)等多个算法进行对比实验.实验结果表明,所提算法能够对不同物体点云实现精确配准,精度和效率均优于所对比算法,且在点云数据存在噪声和密度不一致的情况下仍具有良好的稳定性和精度.

测量、点云配准、核相关、神经网络、迭代

50

TP391.9(计算技术、计算机技术)

国家自然科学基金;中国博士后科学基金

2022-11-25(万方平台首次上网日期,不代表论文的发表时间)

共8页

1685-1692

暂无封面信息
查看本期封面目录

同济大学学报(自然科学版)

0253-374X

31-1267/N

50

2022,50(11)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn