期刊专题

10.11908/j.issn.0253-374x.21489

基于云和高斯过程的网联车辆协同式道路参数估计

引用
近年来智能网联汽车发展迅速,云端预先存储的道路参数信息对于提升网联汽车的悬架控制以及检测路面不规则度至关重要.目前关于道路参数估计的工作大多在单个车辆上完成,此类算法对于车辆模型不确定性以及测量误差较敏感.针对该问题,提出了一种新的协同式估计架构,该架构能够充分利用多个同质的网联汽车的测量信息以提高估计精度.首先,在云端利用前方行驶的全部车辆的数据对高斯过程模型进行训练以通过众包方式获取道路参数的估计结果.然后,该结果以未测量的方式发送到后方相邻车辆,后方单个车辆结合自车车载传感器(如加速度计、横摆角速度以及侧倾角速度)和由云端获取的基于众包高斯过程估计结果,使用卡尔曼滤波对该估计结果进一步优化.进而估计结果被发送到云端以更新高斯过程模型.大量的仿真实验结果表明,以该种方式使用云端估计的道路参数作为额外的未测量信息能够提高道路参数的估计精度,验证了该算法的有效性.

云端估计、协同式估计、道路参数估计、高斯过程

50

U495(交通工程与公路运输技术管理)

2022-06-20(万方平台首次上网日期,不代表论文的发表时间)

共9页

中插1,489-496

相关文献
评论
暂无封面信息
查看本期封面目录

同济大学学报(自然科学版)

0253-374X

31-1267/N

50

2022,50(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn