期刊专题

10.11908/j.issn.0253-374x.21077

基于动态客流量模型的地铁车站空调负荷预测

引用
为了准确预测地铁车站的空调负荷,首先通过地铁车站能耗监测平台的历史数据分析,识别得到客流量和室外气象参数是主要影响因素.其次利用车站CO2体积浓度逐时监测数据建立客流量神经网络预测模型,并与闸机数据对比,预测模型的复相关系数R2可达0.87.以客流量预测为基础,建立了车站空调负荷预测模型,并比较了不同时间尺度训练数据下误差反向传播神经网络算法和支持向量机算法的预测效果,两种算法的R2达到了0.95以上,均方根误差在70~90 kW之间,预测精度较高,但支持向量机算法的运算时间是误差反向传播神经网络算法的3~4倍左右,推荐数据量较大时优先选择神经网络算法.

地铁车站;客流量;神经网络;支持向量机;负荷预测

50

TU96(地下建筑)

国家重点研发计划2016YFC0700100

2022-02-22(万方平台首次上网日期,不代表论文的发表时间)

共7页

114-120

暂无封面信息
查看本期封面目录

同济大学学报(自然科学版)

0253-374X

31-1267/N

50

2022,50(1)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn