期刊专题

10.11908/j.issn.0253-374x.20504

面向精细化管理的停车需求短时预测

引用
停车诱导系统(PGS)是缓解交通拥堵的有效办法,但停车需求短时精准预测作为空余车位发布的关键技术并没有得到有效解决.利用停车需求时变特征曲线的线型稳定性,以及在周内各工作日间的振幅的显著差异性对数据进行分组,采用不仅具备记忆时间序列数据能力,同时有着更简洁的逻辑门控制结构的GRU (gated recurrent unit)模型对停车需求进行短时精准预测,发现相比于传统神经网络以及ARIMA模型,在考虑停车需求周内日间差异性并对数据进行分组后的GRU模型能提供更高的预测精度.

精细化停车管理;停车需求预测;GRU模型;模型比选

49

U491(交通工程与公路运输技术管理)

国家社会科学基金项目207BGL291

2021-10-13(万方平台首次上网日期,不代表论文的发表时间)

共6页

1301-1306

暂无封面信息
查看本期封面目录

同济大学学报(自然科学版)

0253-374X

31-1267/N

49

2021,49(9)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn