期刊专题

10.11908/j.issn.0253-374x.20384

基于小波优化LSTM-ARMA模型的岩土工程非线性时间序列预测

引用
为了更精确地预测岩土工程应力、变形等的非线性时间序列,提出了基于小波优化的长短时记忆神经网络-自回归滑动平均模型(LSTM-ARMA)预测模型.首先使用小波分析将监测序列分解成趋势项和噪声项,采用LSTM网络滚动预测趋势项、ARMA模型预测噪声项,并将趋势项预测值与噪声项预测值之和作为总的时间序列预测值.在此基础上,以上海云岭超深基坑工程为案例进行了基坑地表沉降分析,结果表明组合模型的预测精度要高于单一LSTM模型且更加稳定;进一步采用弹塑性有限元对基坑开挖诱发的地表沉降进行了预测,并与人工智能预测结果进行对比,验证了人工智预测模型的合理性.分析表明,当后续工况与前置工况所诱发的变形机理突变时,人工智能预测误差增大,但伴随后续工况的推进,人工智能预测误差将逐渐减小.

岩土工程;非线性时间序列预测;小波分析;长短时记忆神经网络(LSTM);自回归滑动平均模型(ARMA)

49

TU433(土力学、地基基础工程)

国家自然科学基金资助项目;苏州河段深层排水调蓄管道系统工程试验段监测技术验证与分析模型研究项目;中央高校基本科研业务费专项资金资助

2021-09-08(万方平台首次上网日期,不代表论文的发表时间)

共9页

1107-1115

相关文献
评论
暂无封面信息
查看本期封面目录

同济大学学报(自然科学版)

0253-374X

31-1267/N

49

2021,49(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn