期刊专题

10.11908/j.issn.0253-374x.2015.02.009

快速路交通流运行安全关键参数识别与评估

引用
基于上海市两条快速路采集的事故数据和相应检测器数据,应用随机森林模型对事故发生前5~10 min内的交通流数据进行重要变量筛选.利用基于高斯混合模型和最大期望算法的贝叶斯网络(BN)模型对快速路实时交通流事故风险进行建模分析,并对建立的BN模型进行了可转移性测试.结果表明:选取重要变量后建立的BN模型效果优于使用直接检测数据建立的模型,事故预测准确率达到82.78%;可转移性测试中BN模型的事故预测准确率虽有所下降,但整体预测精度和事故预测精度仍都优于利用直接检测数据建立的模型.

城市快速路、交通安全、主动风险评估、检测器数据、随机森林、贝叶斯网络(BN)

43

U121(城市交通运输)

教育部新世纪人才计划NCET-13-0425;中央高校基本科研业务费专项资金1600219205

2015-03-12(万方平台首次上网日期,不代表论文的发表时间)

共6页

221-225,324

相关文献
评论
暂无封面信息
查看本期封面目录

同济大学学报(自然科学版)

0253-374X

31-1267/N

43

2015,43(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn