期刊专题

10.3969/j.issn.0253-374x.2014.08.018

基于支持向量机的烧结能耗及性能指标预测模型

引用
针对烧结过程中能耗和性能指标预测方法精度不高、训练时间长的问题,首先,在总结当前预测建模方法的基础上,将回归型支持向量机(support vector machine for regression,SVR)引入烧结生产系统,分析了2种建模模式;然后,给出基于SVR预测建模一般流程;最后,以某大型钢铁企业为例进行验证,并与传统的多元线性回归、反向传播(back propagation,BP)神经网络、径向基函数(radical basis function,RBF)网络和极限学习机(extreme learning machine,ELM)等预测方法在相同模式内和不同模式间进行比较.结果表明,SVR方法可快速获得理想的预测结果,在预测精度和时间效率上具有优势.

烧结、能耗、性能指标、预测模型、回归型支持向量机

42

TP274(自动化技术及设备)

国家自然科学基金61273046,61034004;安徽省钢铁产业技术创新规划研究09020203014

2014-09-23(万方平台首次上网日期,不代表论文的发表时间)

共5页

1256-1260

相关文献
评论
暂无封面信息
查看本期封面目录

同济大学学报(自然科学版)

0253-374X

31-1267/N

42

2014,42(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn