期刊专题

10.3969/j.issn.0253-374x.2013.08.026

基于随机矩阵的高光谱影像非负稀疏表达分类

引用
考虑到常规的高光谱影像稀疏表达分类模型的不足,提出随机矩阵-非负稀疏表达分类模型来提高高光谱影像的分类精度.通过引入随机矩阵来改善传统稀疏表达分类模型中测量矩阵以更好满足限制等距特性条件,同时限定系数向量的非负性以提高重构系数的可解释性.基于两个不同的高光谱数据集,对随机矩阵-非负稀疏表达分类模型采用三种方法进行系数重构,并对比常规稀疏表达分类模型的分类结果.实验证明,所提的模型能够明显提高常规稀疏表达分类模型的分类结果.同时,随机矩阵的投影维数对分类精度的影响研究实验表明,较大的投影维数能够保证该模型用以提高高光谱影像的分类精度.

高光谱影像分类、非负稀疏表达、随机矩阵、压缩感知

41

TP75(遥感技术)

国家"九七三"重点基础研究发展计划2012CB957702;教育部留学回国人员科研启动基金

2013-10-08(万方平台首次上网日期,不代表论文的发表时间)

共7页

1274-1280

相关文献
评论
暂无封面信息
查看本期封面目录

同济大学学报(自然科学版)

0253-374X

31-1267/N

41

2013,41(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn