期刊专题

10.11784/tdxbz202203015

基于优化EFD算法的风电行星齿轮箱故障诊断研究

引用
行星齿轮箱作为风力发电机的关键核心部件,对其故障进行准确诊断能有效提升风力发电效能.行星轮系作为一种复杂的传动机械部件,其频谱表现异常复杂,且故障信息极易被无关成分或干扰成分淹没,而利用信号分解获取故障分量的方法在行星齿轮故障诊断中发挥着重要的作用.因此,针对经验傅里叶分解(empirical Fourier de-composition,EFD)易陷入局部频谱分割的问题,优化改进了EFD的频谱分割算法,即在原频谱分割算法上引入边界阈值机制,优化频谱分割边界点的选择,有效限制边界频率陷入局部的问题.通过构造多分量仿真信号对比分析原频谱分割算法和优化算法,并逐步增加分量成分对比分析.仿真分析结果表明,原频谱分割算法随着分量成分的增加,其边界频率逐渐陷入局部,而优化算法却能准确获取边界频率,验证了优化EFD算法的有效性,表明优化频谱分割算法是在原频谱分割算法上的有效改进.最后通过对风电行星齿轮箱实验数据的分析表明,与EFD算法相比,优化EFD算法获取的边界频率不易陷入局部,可以更好地获取故障分量.在对风电行星齿轮箱的故障诊断中,能更有效地识别故障频率成分和确定故障位置.

经验傅里叶分解、故障诊断、频谱分割、行星齿轮箱

56

TH17

国家重点研发计划;国家重点研发计划;国家自然科学基金

2023-03-20(万方平台首次上网日期,不代表论文的发表时间)

共6页

355-360

暂无封面信息
查看本期封面目录

天津大学学报

0493-2137

12-1127/N

56

2023,56(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn