期刊专题

10.11784/tdxbz202111026

基于改进型Yolov4的室内安全帽佩戴状态检测算法

引用
为实现智能检测室内作业人员是否佩戴安全帽,提出了一种改进的Yolov4算法.首先,针对目前室内安全帽佩戴状态检测实验数据较为匮乏的问题,自建了一个用于室内场景的安全帽佩戴状态检测数据集.随后,为提升室内监控图像中模糊、微小目标的安全帽佩戴状态检测准确率,设计了自校准多尺度特征融合模块并将其嵌入原Yolov4网络中.该模块首先通过深度超参数化卷积从上至下、从下至上融合不同尺度下的特征,加强待检测目标的特征纹理,使得模型能够检测出这两类目标.再通过特征自校准模块对融合后的特征进行过滤,加强或抑制特征图上的每一像素点,使得模型可以在融合后的特征图上进行精确的检测.此外为加速模型收敛,使用解耦合的检测头替换原Yolov4中的耦合检测头,使目标定位任务与安全帽佩戴状态的分类任务相互独立.最后为提升模型对于重叠目标的检测能力,提出了软性非极大值抑制后处理算法Soft-CIoU-NMS.实验结果表明,该改进的Yolov4模型能够准确地识别出室内作业人员是否佩戴安全帽,准确率达到了95.1%.相比于原Yolov4模型,该模型对位于监控摄像头远端的模糊、微小目标和监控图像中重叠目标的检测能力有明显提升,检测准确率提升了约4.7%,较好地满足了室内场景下作业人员安全帽佩戴状态智能检测的要求.

计算机视觉、视频监控、深度学习、安全帽佩戴状态检测、Yolov4

56

TP391.4(计算技术、计算机技术)

国家自然科学基金618002044

2023-02-20(万方平台首次上网日期,不代表论文的发表时间)

共9页

64-72

相关文献
评论
暂无封面信息
查看本期封面目录

天津大学学报

0493-2137

12-1127/N

56

2023,56(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn